Development of a Non-invasive Optical Imaging Method for Tracking Vascular Gene Expression

نویسندگان

  • H. H. Chen
  • A. Kumar
  • Y. Yang
  • D. Wang
  • D. Maouyo
  • N. M. Fried
  • X. Yang
چکیده

−Gene therapy is an exciting frontier in modern medicine. To date, no imaging modalities are available for monitoring vascular gene therapy. Green fluorescent protein (GFP) has become an increasingly common marker for gene therapy. We have developed an optical imaging method to track vascular gene expression by detecting fluorescence emitted from GFP or red fluorescent protein (RFP) in arterial walls following gene transfer. We surgically transferred GFPand RFP-vectors into the femoral and carotid arteries of three New Zealand white rabbits. Excitation light was transmitted through a fiber-optic ring-light (Nevoscope) and GFP and RFP fluorescence was detected by a charge coupled device (CCD) camera. Direct contact images of the target arteries demonstrated that this method was capable of both discriminating between normal and transferred arterial tissues and mapping fluorescent protein localization. Subsequent measurements by confocal microscopy showed statistically significant differences in average fluorescent signal intensity between the control and transferred tissues. This result was corroborated by immunohistochemical staining. These preliminary results are encouraging evidence that the optical imaging method can be developed further to be performed non-invasively and in vivo in a clinical setting. Keywords−Optical imaging, green fluorescent protein (GFP), gene therapy, confocal microscopy, cardiovascular disease

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-invasive Optical Techniques for determination of blood Glucose levels: A Review Article

This article reviews the development of non-invasive optical techniques for determination of blood glucose concentrations in diabetic patients. Early diagnosis and daily management are essential for ensuring the healthy life of diabetic patients. The determination of blood glucose concentration with common devices involves the chemical analysis of blood samples, which are obtained by pricking t...

متن کامل

The Difference of Expression of 18 Genes in Axillary Invasion and Vascular Invasion Compared to Control Samples in Breast Cancer

Background & Objective: Recent studies from gene profiling have revealed some genes that are overexpressed in the epithelial-mesenchymal transition (EMT) process and are responsible for its initiation and activation resulting in tumor progression and metastasis. The present study aimed to assess the role of genes involved in the EMT process and the association of these genes wi...

متن کامل

Medical imaging modalities: Prevention of unnecessary orders and non-optimized radiation exposure

Magnetic resonance imaging (MRI) uses a constant magnetic field and radio waves, a non-invasive method for examining tissues, organs and the skeletal system. Advantages and disadvantages of MRI are not fully understood; however, it has been commonly used in the diagnosis of skeleton and bone diseases (such as disk and spinal disorders, joint disorders (arthritis), bone tumours and tissues...

متن کامل

The effect of different concentrations of iron oxide nanoparticles on the expression of p53 gene in human amniotic membrane-derived mesenchymal stem cells  

Superparamagnetic iron oxide nanoparticles (SPIONs) have made extensive advances in nanotechnology. The unique properties of these particles have expanded their application in various fields, including medicine. One of these applications is non-invasive analysis for cell tracking. However, the possibility of toxicity in cells is reported by these nanoparticles. Due to the fact that cellular dam...

متن کامل

Spectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging

Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001